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Abstract

We consider the absorptive properties of three-dimensional phononic crystal (PC) composed of steel spheres arranged in

viscoelastic rubber. The mode conversions during the Mie scattering of a single steel sphere in unbounded rubber are

analyzed in detail. Then the multiple scattering (MS) and absorption effects induced by the simple cubic lattice and the

viscosity of the rubber are investigated by the MS method. The results show that the shear and viscoelastic properties of

the rubber are crucial, and the destructive interface induced by MS below each Bloch frequency enhances the absorption.

Finally, the acoustic properties of finite PC slabs variation with the filling fraction and the incident angle are discussed for a

variety of cases. The results show that the PC can be used as underwater anechoic material.

r 2007 Published by Elsevier Ltd.
1. Introduction

Recently, there has been growing interest in a special type of inhomogeneous materials, known as phononic
crystals (PCs). Within PCs the density and/or elastic coefficients vary periodically in space [1,2]. Based on the
Bloch theory, several theoretical methods, such as the plane-wave expansion (PWE) method [1–4], the finite
difference time domain (FDTD) method [5–7], finite element method [8,9] and the multiple scattering (MS)
method [10–15], have been used to study the dispersion and the propagation of harmonic elastic waves
through PC slabs. Numerous studies of PCs in one (1D), two (2D), and three dimensions (3D) have been
reported in the last few years. Many results of physical interest, for example, the propagation modes,
passbands, stopbands (or gaps), localization of classical waves, and effective homogeneous properties, etc.,
can be extracted from these studies. On the other hand, it relates to many applications such as the quantitative
nondestructive evaluation, the design of sound absorptive materials, etc.

It is known that solid PCs possess several wave polarizations, i.e., one longitudinal and two transverse
waves. The mode conversion among these waves and the sound absorption in viscous PC, however, has
received considerably less attention. In fact, based on the theory for resonance scattering by isolated spherical
inclusions, such as rubber sphere [16], metal sphere [17] or air sphere [18], ideas for the mechanism of the echo
reduction have been discussed. More recently, Ivansson investigated the anechoic properties of viscoelastic
ee front matter r 2007 Published by Elsevier Ltd.
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rubber with periodically distributed spherical cavities as underwater coatings by rigorously accounting the MS
effects [19,20]. Motivated by these studies, we try to show the fundamental absorbing mechanisms operating in
PC, which is composed of a simple cubic lattice of nonoverlapping steel spheres arranged in viscoelastic
rubber. The material combination chosen here is based on the principle that preferred in Ref. [17]. In the
present investigation, we firstly investigate the efficiency of the mode conversion for an isolated steel sphere in
unbounded rubber using an exact Mie scattering. Then the effects of the MS and the damping effects in PC are
investigated by the MS method.

This paper is organized as follows. The model and the calculation method for solid-solid binary 3D PC are
briefly outlined in Section 2. We discuss the numerical results in Section 3, and draw conclusions in Section 4.

2. Models and multiple scattering method

2.1. Models

Fig. 1 shows the model of the 3D PC considered in this paper under the Cartesian coordinates system. The
layer spheres in XY plane are arranged infinitely in a two-dimensional square lattice defined by the primitive
vectors a1 and a2 (see Fig. 1(a)). Fig. 1(c) shows the first Brillouin zone correspondingly. The finite PC slab can
be viewed as a sequence of planes of spheres perpendicular to the Z-axis.

2.2. Mie scattering

The displacement for harmonic elastic wave propagation in homogeneous elastic medium represents the
following time-independent equation

ðlþ 2mÞrðr � uÞ � mr � r� uþ ro2u ¼ 0. (1)

In spherical coordinates system, the solution can be decomposed into one longitudinal (L mode) and two
transverse (M and N modes) solutions

u ¼ LþMþN. (2)

The spherical-wave solutions of the wave equation can be written in the generally form [10]

uðrÞ ¼
X
lms

½almsJlmsðrÞ þ blmsHlmsðrÞ�, (3)

where s ¼ 1; 2; 3 correspond to L;M;N modes, respectively. blms and alms represent the expansion coefficients
for the scattered and input waves, respectively. The relation between the coefficients B ¼ fblmsg and A ¼ falmsg

can be acquired by the solution of the Mie scattering with the following matrix form:

B ¼ TA, (4)
a b c

Fig. 1. The primitive vectors a1, a2, and a3 for the simple cubic lattice. (a,b) denote the lattice in XY-plane and out of XY-plane

respectively, and (c) the first unreduced Brillouin zone of the array in XY-plane.
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where T ¼ ftlmsl0m0s0 g. The process to obtain the Mie scattering matrix (T) of a sphere is an eigenfunction
expansion of the fields inside and outside the sphere. The fields are composed of infinite summations of
spherical harmonics with unknown modal coefficients, which are then determined by the boundary conditions,
i.e., the displacement and normal stress continuity at the interface. For spherical scatterer, the scattering
matrix is independent of m and diagonal with l. The Mie scattering matrix for each partial waves of l order
presents the following form:

LL 0 LN

0 MM 0

NL 0 NN

2
64

3
75. (5)

The meanings of the five nonzero elements are pellucid. For example, LL stands for the conversion from L

to L mode during the scattering procedure, i.e., longitudinal incident wave scattered into a longitudinal
outgoing wave. It shows that the L mode and the N mode are coupled to each other, while the M mode is
decoupled.

2.3. Multiple scattering method

The MS method is a layer-by-layer approach for calculating the transmittance and reflectance for a finite
slab with periodically arranged scatterers. For the central scatterer at the origin, the scattered wave

uscðrÞ ¼
X
lms

blmsHlmsðrÞ (6)

is mainly determined by the overall incident wave, which includes two parts. One is the externally incident
wave uinðeÞðrÞ ¼

P
lmsa

ðeÞ
lmsJlmsðrÞ. The second part is the sum of all the scattered waves except that from the

central scatterer. We obtain

uinðrÞ � uinðeÞðrÞ ¼
X
rja0

X
lms

b
j
lmsH

j
lmsðrjÞ, (7)

where rj refers to the position of the spatial point measured form scatterer j. According to the Bloch theorem,
one obtains

b
j
lms ¼ blms expðikk � RjÞ, (8)

where kJ is a reduced wave vector in the 2D Brillouin zone of the reciprocal lattice, and Rj represents the
position of scatterer j. The coefficients of fblmsg are completely determined by fa

ðeÞ
lmsg through the scattering

matrix T. To get the transmittance and reflectance of the central layer between the artificial interfaces labeled
with N and N+1 in Fig. 1(b), all the spherical-wave expansions of total scattering and input waves need to be
transformed to plane waves as the general form:X

g

U�gg expðik
�
ggrÞ, (9)

where k�gg ¼ ðkk þ g;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � jkk þ gj2

q
Þ, g ¼ oc�1l for L mode and g ¼ oc�1t for N and M modes, respectively,

and the superscript +(�) means that the incidence is along positive (negative) Z-axis. Then we can obtain the
relations of the input and output waves for the central plane of scatterers as following:

UþðN þ 1Þ ¼ QIUþðNÞ þQIIU�ðN þ 1Þ,

U�ðNÞ ¼ QIIIUþðNÞ þQIVU�ðN þ 1Þ. (10)

For details one can refer to Refs. [11–14]. Once the matrices Q for one scattering layer are determined, one
can easily obtain the Q matrices of a slab of N layers thick. As for the inter-layer periodicity along Z-axis, the
Bloch-theory guarantees

U�ðN þ 1Þ ¼ expðik � a3ÞU
�ðNÞ, (11)
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where a3 is the primitive vector along positive z (see Fig. 1(b)), k ¼ (k||, kz(o, k||)). After some algebra it yields
a standard eigenfunction

QI QII

� QIV
� ��1

QIIIQI QIV
� ��1

I�QIIIQII
� �

 !
UþðNÞ

U�ðN þ 1Þ

 !
¼ expðik � a3Þ

UþðNÞ

U�ðN þ 1Þ

 !
, (12)

where I is a unit matrix. For given k|| and o, we obtain the eigenvalues kz(o, k||). The method outlined above
accounts for the material viscosity via complex field equations, complex propagation vectors and the
corresponding boundary conditions on the surface of the spheres. Under the condition of fully elasticity, the
propagating wave (pass band) or evanescent wave (band gap) depends on real or complex of kz. For a finite
PC slab of thickness D, the attenuation of an incident wave is determined by the reflection mechanism induced
by the evanescent wave. Roughly speaking, the amplitude of the wave decreases proportionally to exp(-
Im[kz]D) [14,15]. Im[kz] (Re[kz]) denotes the imaginary (real) part of kz. Under the viscoelastic condition,
Im[kz] denotes the attenuation including the absorption effects [17].

3. Results and discussions

3.1. Mode conversion during the Mie scattering

Before dealing with the overall bulk wave behavior of PC, it will be useful to state briefly certain basic
features of the acoustic scattering by a single isolated sphere. Fig. 2 shows the summations of the absolute
values of T-matrix elements from l ¼ 1 to 6 for a steel sphere (r ¼ 7890 kgm�3, cl ¼ 5780m s�1, and
ba

dc

Fig. 2. The summations of the absolute values of T-matrix elements from l ¼ 1 to 6 vs. frequency for an isolated steel sphere in unbounded

rubber. (a,b) show the results for incident longitudinal and transverse waves respectively, and (c,d) are the same as (a,b) except that the

transverse velocity of rubber is artificially decreased to 65m s�1. In each, the dashed dot and solid lines are the cases without and with

mode conversions between the L and N modes, respectively. The thick doted line denotes the MM element.
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ct ¼ 3220m s�1) in unbounded rubber (r ¼ 1039 kgm�3, cl ¼ 1470m s�1, and ct ¼ 360m s�1). Here, the
maximum of angular momentum cutoff lmax ¼ 6 yields accurate results in the given frequency range. In order
to compare with what discussed in the following parts, the frequency O is scaled in units of fa/ct. Here, a is the
lattice constant of the simple cubic lattice adopted in the following part, and ct denotes the transverse velocity
of rubber. In the present computation, the ratio of the radius (R) of the sphere and the lattice constant is 0.36
and the viscosity of both components is neglected. For the low frequencies of interest, we find that the incident
longitudinal wave does not convert a large fraction of energy into transverse wave. From Fig. 2(a) we can see
that the incident energy flux is scattered by LN channel justly exceeds the LL channel near O ¼ 0.45. Under
the transverse incidence, the amplitudes of T-matrix elements present more than one order of those for
longitudinal incidence (see Fig. 2(b)). These observations suggest that the scattered energy tends to remain in
transverse mode, which damp rapidly in rubber. Another consequence of the mode conversion is that the
transverse waves tend to be scattered into directions away from the direction of the incident longitudinal wave
and be channeled into propagation along the longer dimensions of PC slab, which enhances energy dissipation
because loss increases exponentially with distance [16]. All these properties hint the reduction of the acoustic
echo from a PC slab.

Generally, the transverse velocity of rubber is available within a large range, Figs. 2(c) and (d) show the
cases of the Mie scattering when the transverse velocity of rubber is artificially decreased to 65m s�1. It can be
seen that these plots are relative stable in outlines as those in Figs. 2(a) and (b), respectively, but the mode-
coupled frequency moves to lower frequency (and to much lower frequency in units of hertz). Unfortunately, a
notable feature is the direct and mode conversion scatterings are greatly weakened under the longitudinal
wave incidence, which will lead to less energy flux of transverse modes and less absorption.
3.2. The effects of multiple scattering

The Mie scattering from a single sphere may provide a primary picture of the absorption mechanism
occurring within PC, but it does not fully address the effects due to the MS in PC. Here, we only consider the
case of longitudinal incidence for the actual underwater case. Note here that the longitudinal wavelength is
4.1 times of that of the transverse wave in rubber at the same frequency. So the transverse wave interaction
among the lattice will dominate the transmittance of the longitudinal waves at the low-frequency range
considered here. The transverse wave, induced by mode conversion from longitudinal wave, is modulated
by the periodicity in XY plane and satisfies the Bloch-theory. Below the first Bloch frequency (i.e., O ¼ 1,
the definition of the Bloch frequency is given by Ref. [21]), the destructive interface among the lattice for
the transverse wave interaction enhances the Mie scattering of the scatterer, which presents the ‘‘rigid body
translational dipole resonance’’ [21]. The destructive interaction for the mode-converted transverse waves
scattering blocks the wave transmission and induces the gap (see Figs. 3(a) and (b)). Another important
consequence of the destructive interaction is the effective velocities of the PC, denoted by the slopes of the
dispersion curves in Fig. 3(a), becomes slow near the dipole resonance. These observations suggest that the
transverse mode of the scattered energy is greatly enhanced by the MS, which will yield good scattering
absorption in viscoelastic PC.
3.3. The effects of viscosity

Generally, the viscosity would make the Lamé parameters (hence the velocities) be complex, i.e.,
l ¼ le � ilv, m ¼ me � imv. The real and imaginary parts, denoted by subscripts e and v, refer to the elastic and
loss moduli, respectively. Here, we neglect the viscosity of steel since the loss for steel is much smaller than that
of rubber. Two different viscous levels for rubber are adopted. They are lv ¼ 0:1le, mv ¼ 0:1me for low
viscosity and lv ¼ 0:1le, mv ¼ 0:2me for high viscosity. For simplicity, it is provided that the viscoelastic
properties of the components do not vary with frequency. Fig. 3(c) shows the attenuation, i.e., Im[kz] vs.
frequency for different viscous level. Compare with Fig. 3(b), it can be seen that the main effect of the viscosity
shown as the attenuation is dependent on the frequency. In general, the attenuation increases as a function of
frequency although there are some exceptions, which is especially obvious near the gap frequency domain.
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Fig. 3. Complex band structure of simple cubic lattice composed of steel spheres embedded in rubber. (a,b) represent the Re[kz]a3/p and

Im[kz]a3/p, respectively. The zeros of Im[kz] are not plotted, (c) the attenuations with low and high viscosity in rubber are plotted with

dashed and solid lines, respectively. In the present computation, R/a is 0.36, accordingly the filling fraction is 0.19.
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When the value of imaginary parts of Lamé parameters increases, one may observe that the high viscous level
almost washes everything out as if there were no inner scatterers in the system.
3.4. Acoustic properties of finite PC slab

By examination of the components of the T matrix one can see that there exists conversion from
longitudinal to transverse wave modes. The MS slows the wave propagation and enhances the energy
absorption. As a longitudinal wave propagates through the PC, more and more of the input energy would be
converted to transverse modes, which damp rapidly in viscoelastic rubber. So the subsequent scattering does
not convert a large fraction of the transverse wave energy back into the longitudinal wave. In this section, we
shall show the actual acoustic properties of finite PC slabs. The slabs are immersed in infinite water, and a
plane longitudinal wave incidence is exerted in one side. The two interfaces of water/rubber are both
considered in present investigation. We show that the PC slab can successfully employ scattering and damping
effects to reduce acoustic reflections as underwater coatings. The effects of the transverse velocity of rubber,
filling fraction, and the incidence angle on the acoustic properties are also discussed.

Fig. 4 compares the acoustic properties of two PC slabs with different transverse velocities, i.e., (a) 65m s�1

and (b) 360m s�1, of rubber with low viscosity. The slabs used here and in the following parts are two-layer
thick. We can see, as expected, that the lower absorbance (higher transmittance) exists in the slab where the
rubber possessing the lower transverse velocity, which is mainly induced by the weak mode conversion during
the Mie scattering (see Fig. 2(c)). The three dips in the transmittance near O ¼ 0.73, 1.20, and 1.70 are mainly
induced by the resonance scattering because of the destructive scattering below the first three Bloch
frequencies (i.e., O ¼ 1,

ffiffiffi
2
p

, and
ffiffiffi
3
p

), respectively. Near the resonant frequencies, the intense scattering of
transverse wave attenuates the forward propagating wave, accompanied by the absorption peaks due to
the viscosity. One can observe that three unobvious reflectance peaks correspond to those of the absorbance
(see Fig. 4(a)). Here, the reflected wave includes two parts. One is the direct interface reflection. The other is
the back scattering of direct conversion from the longitudinal incidence and back conversion from the damped
transverse waves. Choosing moderate filling fraction and viscosity can reduce the reflectance (see the following
parts). As for the rubber with transverse velocity 360m s�1, the absorbance is high and the peaks are not
obvious (see Fig. 4(b)), which is mainly induced by the higher efficiency of mode conversion into transverse
wave during the Mie scattering (see Fig. 2).
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Fig. 5. The same as Fig. 4 (b) except that two viscous levels of rubber are adopted: (a) lv ¼ 0.1le, mv ¼ 0.2me, (b) lv ¼ 0.1le, mv ¼ 0.5me.
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Fig. 4. Acoustic coefficients vs. frequency for a normally incident longitudinal wave through two-layer thick PC slabs with low viscosity.

All the slabs possess the same lattice as Fig. 3. (a,b) represent the results for different transverse velocities of rubber with 65m s�1 and

360m s�1. In each, the thin solid, thick solid and dashed dot lines denote the transmittance, absorbance and reflectance, respectively.
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Based on Fig. 4(b), the effect of the viscosity of rubber on the acoustic properties of the slab is investigated.
A higher viscosity level lv ¼ 0:1le, mv ¼ 0:5me is adopted. Fig. 5 shows the acoustic properties of the slab with
high viscosity in rubber. We can readily see that the absorbance is enhanced and the reflectance is depressed
due to more energy being damped. And the oscillations in the absorbance, as other acoustic coefficients,
gradually disappear. A notable feature is that the reflectance near O ¼ 0.4 is little depressed, which is mainly
induced by the impedance mismatch induced by the relative high concentration of steel spheres (R/a ¼ 0.36).
The worse cases may occur at higher filling fraction, as shown in Fig. 6(d).

We have also looked at the variation of the acoustic coefficients with the filling fraction. From Fig. 6, one
can see that the absorbance peak moves little to lower frequency with the sphere’s radius increasing, which is
mainly induced by the Mie scattering. From Fig. 7, we can readily see that the mode conversion by LN

channel during the Mie scattering moves to lower frequency when increasing the radius of the sphere. But the
absorbance is reduced by the impedance mismatch (due to the high impedance of spheres) and the volume
reduction of the viscous rubber for energy loss (see Fig. 7). The preferable R/a ranges from 0.3 to 0.36 for the
actual anechoic material.

What discussed above is based on the normal incidence, i.e., along Z-axis. Here, we investigate the effects of
the incident angle on the acoustic properties. Fig. 8 shows the variation of the acoustic coefficients with the
incidence angles. It is observed that the absorbance gets little larger with the incidence angle increasing. The
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Fig. 6. The same as Fig. 4 (b) except that different radii of spheres are selected: R/a ¼ (a) 0.18, (b) 0.25, (c) 0.31, and (d) 0.40, respectively.
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reflectance at low frequency is reduced gradually. The reason may be that the incident component along XY

plane, as a direct transverse wave incidence, increases with the incident angle.

4. Conclusions

We have shown the mode conversion of the isolated steel sphere in unbounded rubber. It shows that there
exists coupling from longitudinal to transverse wave modes or vice versa. Then the effects of the MS and the
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Fig. 8. The same as Fig. 4(b) except that the incident angles are (a) 151, (b) 301, (c) 451 and (d) 601.
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viscosity for PCs with simple cubic lattice of steel spheres arranged in viscoelastic rubber were investigated. As
a longitudinal wave propagates through the PC, the destructive interface below each Bloch frequencies
enhances the mode conversion to transverse wave, which damps rapidly in viscoelastic rubber and turns to
heat. So the subsequent scattering does not convert a large fraction of the transverse wave energy back into the
longitudinal wave. These results show the fundamental absorption mechanism induced by the MS and
viscosity effects operating in PC. For the finite PC slab, it shows that the absorbance (reflectance) can be
increased (decreased) by choosing moderate filling fraction and viscosity. For further optimal design, one may
choose other lattice (such as face cubic lattice), material combinations and different layers combination (for
example, the outer layer for impedance matching and the inner layer for absorption), etc.
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